summaryrefslogtreecommitdiff
path: root/Src/mem.c
diff options
context:
space:
mode:
Diffstat (limited to 'Src/mem.c')
-rw-r--r--Src/mem.c1254
1 files changed, 1254 insertions, 0 deletions
diff --git a/Src/mem.c b/Src/mem.c
new file mode 100644
index 000000000..1145f8c5e
--- /dev/null
+++ b/Src/mem.c
@@ -0,0 +1,1254 @@
+/*
+ * mem.c - memory management
+ *
+ * This file is part of zsh, the Z shell.
+ *
+ * Copyright (c) 1992-1997 Paul Falstad
+ * All rights reserved.
+ *
+ * Permission is hereby granted, without written agreement and without
+ * license or royalty fees, to use, copy, modify, and distribute this
+ * software and to distribute modified versions of this software for any
+ * purpose, provided that the above copyright notice and the following
+ * two paragraphs appear in all copies of this software.
+ *
+ * In no event shall Paul Falstad or the Zsh Development Group be liable
+ * to any party for direct, indirect, special, incidental, or consequential
+ * damages arising out of the use of this software and its documentation,
+ * even if Paul Falstad and the Zsh Development Group have been advised of
+ * the possibility of such damage.
+ *
+ * Paul Falstad and the Zsh Development Group specifically disclaim any
+ * warranties, including, but not limited to, the implied warranties of
+ * merchantability and fitness for a particular purpose. The software
+ * provided hereunder is on an "as is" basis, and Paul Falstad and the
+ * Zsh Development Group have no obligation to provide maintenance,
+ * support, updates, enhancements, or modifications.
+ *
+ */
+
+#include "zsh.mdh"
+#include "mem.pro"
+
+/*
+ There are two ways to allocate memory in zsh. The first way is
+ to call zalloc/zcalloc, which call malloc/calloc directly. It
+ is legal to call realloc() or free() on memory allocated this way.
+ The second way is to call halloc/hcalloc, which allocates memory
+ from one of the memory pools on the heap stack. Such memory pools
+ will automatically created when the heap allocation routines are
+ called. To be sure that they are freed at appropriate times
+ one should call pushheap() before one starts using heaps and
+ popheap() after that (when the memory allocated on the heaps since
+ the last pushheap() isn't needed anymore).
+ pushheap() saves the states of all currently allocated heaps and
+ popheap() resets them to the last state saved and destroys the
+ information about that state. If you called pushheap() and
+ allocated some memory on the heaps and then come to a place where
+ you don't need the allocated memory anymore but you still want
+ to allocate memory on the heap, you should call freeheap(). This
+ works like popheap(), only that it doesn't free the information
+ about the heap states (i.e. the heaps are like after the call to
+ pushheap() and you have to call popheap some time later).
+
+ Memory allocated in this way does not have to be freed explicitly;
+ it will all be freed when the pool is destroyed. In fact,
+ attempting to free this memory may result in a core dump.
+ The pair of pointers ncalloc and alloc may point to either
+ zalloc & zcalloc or halloc & hcalloc; permalloc() sets them to the
+ former, and heapalloc() sets them to the latter. This can be useful.
+ For example, the dupstruct() routine duplicates a syntax tree,
+ allocating the new memory for the tree using alloc(). If you want
+ to duplicate a structure for a one-time use (i.e. to execute the list
+ in a for loop), call heapalloc(), then dupstruct(). If you want
+ to duplicate a structure in order to preserve it (i.e. a function
+ definition), call permalloc(), then dupstruct().
+
+ If we use zsh's own allocator we use a simple trick to avoid that
+ the (*real*) heap fills up with empty zsh-heaps: we allocate a
+ large block of memory before allocating a heap pool, this memory
+ is freed again immediately after the pool is allocated. If there
+ are only small blocks on the free list this guarantees that the
+ memory for the pool is at the end of the memory which means that
+ we can give it back to the system when the pool is freed.
+*/
+
+/* != 0 if we are allocating in the heaplist */
+
+/**/
+int useheap;
+
+/* Current allocation pointers. ncalloc() is either zalloc() or halloc(); *
+ * alloc() is either zcalloc() or hcalloc(). */
+
+/**/
+void *(*ncalloc) _((size_t)), *(*alloc) _((size_t));
+
+#ifdef ZSH_MEM_WARNING
+# ifndef DEBUG
+# define DEBUG 1
+# endif
+#endif
+
+#if defined(ZSH_MEM) && defined(ZSH_MEM_DEBUG)
+
+static int h_m[1025], h_push, h_pop, h_free;
+
+#endif
+
+#define H_ISIZE sizeof(long)
+#define HEAPSIZE (8192 - H_ISIZE)
+#define HEAP_ARENA_SIZE (HEAPSIZE - sizeof(struct heap))
+#define HEAPFREE (16384 - H_ISIZE)
+
+/* set default allocation to heap stack */
+
+/**/
+int
+global_heapalloc(void)
+{
+ int luh = useheap;
+
+ alloc = hcalloc;
+ ncalloc = halloc;
+ useheap = 1;
+ return luh;
+}
+
+/* set default allocation to malloc() */
+
+/**/
+int
+global_permalloc(void)
+{
+ int luh = useheap;
+
+ alloc = zcalloc;
+ ncalloc = zalloc;
+ useheap = 0;
+ return luh;
+}
+
+/* heappush saves the current heap state using this structure */
+
+struct heapstack {
+ struct heapstack *next; /* next one in list for this heap */
+ size_t used;
+};
+
+/* A zsh heap. */
+
+struct heap {
+ struct heap *next; /* next one */
+ size_t used; /* bytes used from the heap */
+ struct heapstack *sp; /* used by pushheap() to save the value used */
+#define arena(X) ((char *) (X) + sizeof(struct heap))
+};
+
+/* list of zsh heap */
+
+static Heap heaps;
+
+/* save states of zsh heaps */
+
+/**/
+void
+pushheap(void)
+{
+ Heap h;
+ Heapstack hs;
+
+#if defined(ZSH_MEM) && defined(ZSH_MEM_DEBUG)
+ h_push++;
+#endif
+
+ for (h = heaps; h; h = h->next) {
+ DPUTS(!h->used, "BUG: empty heap");
+ hs = (Heapstack) zalloc(sizeof(*hs));
+ hs->next = h->sp;
+ h->sp = hs;
+ hs->used = h->used;
+ }
+}
+
+/* reset heaps to previous state */
+
+/**/
+void
+freeheap(void)
+{
+ Heap h, hn, hl = NULL;
+
+#if defined(ZSH_MEM) && defined(ZSH_MEM_DEBUG)
+ h_free++;
+#endif
+ for (h = heaps; h; h = hn) {
+ hn = h->next;
+ if (h->sp) {
+#ifdef ZSH_MEM_DEBUG
+ memset(arena(h) + h->sp->used, 0xff, h->used - h->sp->used);
+#endif
+ h->used = h->sp->used;
+ hl = h;
+ } else
+ zfree(h, HEAPSIZE);
+ }
+ if (hl)
+ hl->next = NULL;
+ else
+ heaps = NULL;
+}
+
+/* reset heap to previous state and destroy state information */
+
+/**/
+void
+popheap(void)
+{
+ Heap h, hn, hl = NULL;
+ Heapstack hs;
+
+#if defined(ZSH_MEM) && defined(ZSH_MEM_DEBUG)
+ h_pop++;
+#endif
+
+ for (h = heaps; h; h = hn) {
+ hn = h->next;
+ if ((hs = h->sp)) {
+ h->sp = hs->next;
+#ifdef ZSH_MEM_DEBUG
+ memset(arena(h) + hs->used, 0xff, h->used - hs->used);
+#endif
+ h->used = hs->used;
+ zfree(hs, sizeof(*hs));
+
+ hl = h;
+ } else
+ zfree(h, HEAPSIZE);
+ }
+ if (hl)
+ hl->next = NULL;
+ else
+ heaps = NULL;
+}
+
+/* allocate memory from the current memory pool */
+
+/**/
+void *
+halloc(size_t size)
+{
+ Heap h;
+ size_t n;
+
+ size = (size + H_ISIZE - 1) & ~(H_ISIZE - 1);
+
+#if defined(ZSH_MEM) && defined(ZSH_MEM_DEBUG)
+ h_m[size < 1024 ? (size / H_ISIZE) : 1024]++;
+#endif
+
+ /* find a heap with enough free space */
+
+ for (h = heaps; h; h = h->next) {
+ if (HEAP_ARENA_SIZE >= (n = size + h->used)) {
+ h->used = n;
+ return arena(h) + n - size;
+ }
+ }
+
+ {
+ Heap hp;
+ /* not found, allocate new heap */
+#ifdef ZSH_MEM
+ static int called = 0;
+ void *foo = called ? (void *)malloc(HEAPFREE) : NULL;
+ /* tricky, see above */
+#endif
+
+ queue_signals();
+ n = HEAP_ARENA_SIZE > size ? HEAPSIZE : size + sizeof(*h);
+ for (hp = NULL, h = heaps; h; hp = h, h = h->next);
+
+ h = (Heap) zalloc(n);
+
+#ifdef ZSH_MEM
+ if (called)
+ zfree(foo, HEAPFREE);
+ called = 1;
+#endif
+
+ h->used = size;
+ h->next = NULL;
+ h->sp = NULL;
+
+ if (hp)
+ hp->next = h;
+ else
+ heaps = h;
+
+ unqueue_signals();
+ return arena(h);
+ }
+}
+
+/**/
+void *
+hrealloc(char *p, size_t old, size_t new)
+{
+ Heap h, ph;
+
+ old = (old + H_ISIZE - 1) & ~(H_ISIZE - 1);
+ new = (new + H_ISIZE - 1) & ~(H_ISIZE - 1);
+
+ if (old == new)
+ return p;
+ if (!old && !p)
+ return halloc(new);
+
+ /* find the heap with p */
+
+ for (h = heaps, ph = NULL; h; ph = h, h = h->next)
+ if (p >= arena(h) && p < arena(h) + HEAP_ARENA_SIZE)
+ break;
+
+ DPUTS(!h, "BUG: hrealloc() called for non-heap memory.");
+ DPUTS(h->sp && arena(h) + h->sp->used > p,
+ "BUG: hrealloc() wants to realloc pushed memory");
+
+ if (p + old < arena(h) + h->used) {
+ if (new > old) {
+ char *ptr = (char *) halloc(new);
+ memcpy(ptr, p, old);
+ return ptr;
+ } else
+ return new ? p : NULL;
+ }
+
+ DPUTS(p + old != arena(h) + h->used, "BUG: hrealloc more than allocated");
+
+ if (p == arena(h)) {
+ if (!new) {
+ if (ph)
+ ph->next = h->next;
+ else
+ heaps = h->next;
+ zfree(h, HEAPSIZE);
+ return NULL;
+ }
+ if (old > HEAP_ARENA_SIZE || new > HEAP_ARENA_SIZE) {
+ size_t n = HEAP_ARENA_SIZE > new ? HEAPSIZE : new + sizeof(*h);
+
+ if (ph)
+ ph->next = h = (Heap) realloc(h, n);
+ else
+ heaps = h = (Heap) realloc(h, n);
+ }
+ h->used = new;
+ return arena(h);
+ }
+ DPUTS(h->used > HEAP_ARENA_SIZE, "BUG: hrealloc at invalid address");
+ if (h->used + (new - old) <= HEAP_ARENA_SIZE) {
+ h->used += new - old;
+ return p;
+ } else {
+ char *t = halloc(new);
+ memcpy(t, p, old > new ? new : old);
+ h->used -= old;
+#ifdef ZSH_MEM_DEBUG
+ memset(p, 0xff, old);
+#endif
+ return t;
+ }
+}
+
+/* allocate memory from the current memory pool and clear it */
+
+/**/
+void *
+hcalloc(size_t size)
+{
+ void *ptr;
+
+ ptr = halloc(size);
+ memset(ptr, 0, size);
+ return ptr;
+}
+
+/* allocate permanent memory */
+
+/**/
+void *
+zalloc(size_t size)
+{
+ void *ptr;
+
+ if (!size)
+ size = 1;
+ if (!(ptr = (void *) malloc(size))) {
+ zerr("fatal error: out of memory", NULL, 0);
+ exit(1);
+ }
+
+ return ptr;
+}
+
+/**/
+void *
+zcalloc(size_t size)
+{
+ void *ptr;
+
+ if (!size)
+ size = 1;
+ if (!(ptr = (void *) malloc(size))) {
+ zerr("fatal error: out of memory", NULL, 0);
+ exit(1);
+ }
+ memset(ptr, 0, size);
+
+ return ptr;
+}
+
+/* This front-end to realloc is used to make sure we have a realloc *
+ * that conforms to POSIX realloc. Older realloc's can fail if *
+ * passed a NULL pointer, but POSIX realloc should handle this. A *
+ * better solution would be for configure to check if realloc is *
+ * POSIX compliant, but I'm not sure how to do that. */
+
+/**/
+void *
+zrealloc(void *ptr, size_t size)
+{
+ if (ptr) {
+ if (size) {
+ /* Do normal realloc */
+ if (!(ptr = (void *) realloc(ptr, size))) {
+ zerr("fatal error: out of memory", NULL, 0);
+ exit(1);
+ }
+ return ptr;
+ }
+ else
+ /* If ptr is not NULL, but size is zero, *
+ * then object pointed to is freed. */
+ free(ptr);
+ } else {
+ /* If ptr is NULL, then behave like malloc */
+ return malloc(size);
+ }
+
+ return NULL;
+}
+
+/**/
+char *
+dupstring(const char *s)
+{
+ char *t;
+
+ if (!s)
+ return NULL;
+ t = (char *)ncalloc(strlen((char *)s) + 1);
+ strcpy(t, s);
+ return t;
+}
+
+/**/
+char *
+ztrdup(const char *s)
+{
+ char *t;
+
+ if (!s)
+ return NULL;
+ t = (char *)zalloc(strlen((char *)s) + 1);
+ strcpy(t, s);
+ return t;
+}
+
+#ifdef ZSH_MEM
+
+/*
+ Below is a simple segment oriented memory allocator for systems on
+ which it is better than the system's one. Memory is given in blocks
+ aligned to an integer multiple of sizeof(long) (4 bytes on most machines,
+ but 8 bytes on e.g. a dec alpha). Each block is preceded by a header
+ which contains the length of the data part (in bytes). In allocated
+ blocks only this field of the structure m_hdr is senseful. In free
+ blocks the second field (next) is a pointer to the next free segment
+ on the free list.
+
+ On top of this simple allocator there is a second allocator for small
+ chunks of data. It should be both faster and less space-consuming than
+ using the normal segment mechanism for such blocks.
+ For the first M_NSMALL-1 possible sizes memory is allocated in arrays
+ that can hold M_SNUM blocks. Each array is stored in one segment of the
+ main allocator. In these segments the third field of the header structure
+ (free) contains a pointer to the first free block in the array. The
+ last field (used) gives the number of already used blocks in the array.
+
+ If the macro name ZSH_MEM_DEBUG is defined, some information about the memory
+ usage is stored. This information can than be viewed by calling the
+ builtin `mem' (which is only available if ZSH_MEM_DEBUG is set).
+
+ If ZSH_MEM_WARNING is defined, error messages are printed in case of errors.
+
+ If ZSH_SECURE_FREE is defined, free() checks if the given address is really
+ one that was returned by malloc(), it ignores it if it wasn't (printing
+ an error message if ZSH_MEM_WARNING is also defined).
+*/
+#if !defined(__hpux) && !defined(DGUX) && !defined(__osf__)
+# if defined(_BSD)
+# ifndef HAVE_BRK_PROTO
+ extern int brk _((caddr_t));
+# endif
+# ifndef HAVE_SBRK_PROTO
+ extern caddr_t sbrk _((int));
+# endif
+# else
+# ifndef HAVE_BRK_PROTO
+ extern int brk _((void *));
+# endif
+# ifndef HAVE_SBRK_PROTO
+ extern void *sbrk _((int));
+# endif
+# endif
+#endif
+
+#if defined(_BSD) && !defined(STDC_HEADERS)
+# define FREE_RET_T int
+# define FREE_ARG_T char *
+# define FREE_DO_RET
+# define MALLOC_RET_T char *
+# define MALLOC_ARG_T size_t
+#else
+# define FREE_RET_T void
+# define FREE_ARG_T void *
+# define MALLOC_RET_T void *
+# define MALLOC_ARG_T size_t
+#endif
+
+/* structure for building free list in blocks holding small blocks */
+
+struct m_shdr {
+ struct m_shdr *next; /* next one on free list */
+};
+
+struct m_hdr {
+ long len; /* length of memory block */
+ struct m_hdr *next; /* if free: next on free list
+ if block of small blocks: next one with
+ small blocks of same size*/
+ struct m_shdr *free; /* if block of small blocks: free list */
+ long used; /* if block of small blocks: number of used
+ blocks */
+};
+
+
+/* alignment for memory blocks */
+
+#define M_ALIGN (sizeof(long))
+
+/* length of memory header, length of first field of memory header and
+ minimal size of a block left free (if we allocate memory and take a
+ block from the free list that is larger than needed, it must have at
+ least M_MIN extra bytes to be splitted; if it has, the rest is put on
+ the free list) */
+
+#define M_HSIZE (sizeof(struct m_hdr))
+#define M_ISIZE (sizeof(long))
+#define M_MIN (2 * M_ISIZE)
+
+/* a pointer to the last free block, a pointer to the free list (the blocks
+ on this list are kept in order - lowest address first) */
+
+static struct m_hdr *m_lfree, *m_free;
+
+/* system's pagesize */
+
+static long m_pgsz = 0;
+
+/* the highest and the lowest valid memory addresses, kept for fast validity
+ checks in free() and to find out if and when we can give memory back to
+ the system */
+
+static char *m_high, *m_low;
+
+/* Management of blocks for small blocks:
+ Such blocks are kept in lists (one list for each of the sizes that are
+ allocated in such blocks). The lists are stored in the m_small array.
+ M_SIDX() calculates the index into this array for a given size. M_SNUM
+ is the size (in small blocks) of such blocks. M_SLEN() calculates the
+ size of the small blocks held in a memory block, given a pointer to the
+ header of it. M_SBLEN() gives the size of a memory block that can hold
+ an array of small blocks, given the size of these small blocks. M_BSLEN()
+ caculates the size of the small blocks held in a memory block, given the
+ length of that block (including the header of the memory block. M_NSMALL
+ is the number of possible block sizes that small blocks should be used
+ for. */
+
+
+#define M_SIDX(S) ((S) / M_ISIZE)
+#define M_SNUM 50
+#define M_SLEN(M) ((M)->len / M_SNUM)
+#define M_SBLEN(S) ((S) * M_SNUM + sizeof(struct m_shdr *) + \
+ sizeof(long) + sizeof(struct m_hdr *))
+#define M_BSLEN(S) (((S) - sizeof(struct m_shdr *) - \
+ sizeof(long) - sizeof(struct m_hdr *)) / M_SNUM)
+#define M_NSMALL 8
+
+static struct m_hdr *m_small[M_NSMALL];
+
+#ifdef ZSH_MEM_DEBUG
+
+static int m_s = 0, m_b = 0;
+static int m_m[1025], m_f[1025];
+
+static struct m_hdr *m_l;
+
+#endif /* ZSH_MEM_DEBUG */
+
+MALLOC_RET_T
+malloc(MALLOC_ARG_T size)
+{
+ struct m_hdr *m, *mp, *mt;
+ long n, s, os = 0;
+ struct heap *h, *hp, *hf = NULL, *hfp = NULL;
+
+ /* some systems want malloc to return the highest valid address plus one
+ if it is called with an argument of zero */
+
+ if (!size)
+ return (MALLOC_RET_T) m_high;
+
+ queue_signals(); /* just queue signals rather than handling them */
+
+ /* first call, get page size */
+
+ if (!m_pgsz) {
+
+#ifdef _SC_PAGESIZE
+ m_pgsz = sysconf(_SC_PAGESIZE); /* SVR4 */
+#else
+# ifdef _SC_PAGE_SIZE
+ m_pgsz = sysconf(_SC_PAGE_SIZE); /* HPUX */
+# else
+ m_pgsz = getpagesize();
+# endif
+#endif
+
+ m_free = m_lfree = NULL;
+ }
+ size = (size + M_ALIGN - 1) & ~(M_ALIGN - 1);
+
+ /* Do we need a small block? */
+
+ if ((s = M_SIDX(size)) && s < M_NSMALL) {
+ /* yep, find a memory block with free small blocks of the
+ appropriate size (if we find it in this list, this means that
+ it has room for at least one more small block) */
+ for (mp = NULL, m = m_small[s]; m && !m->free; mp = m, m = m->next);
+
+ if (m) {
+ /* we found one */
+ struct m_shdr *sh = m->free;
+
+ m->free = sh->next;
+ m->used++;
+
+ /* if all small blocks in this block are allocated, the block is
+ put at the end of the list blocks wth small blocks of this
+ size (i.e., we try to keep blocks with free blocks at the
+ beginning of the list, to make the search faster */
+
+ if (m->used == M_SNUM && m->next) {
+ for (mt = m; mt->next; mt = mt->next);
+
+ mt->next = m;
+ if (mp)
+ mp->next = m->next;
+ else
+ m_small[s] = m->next;
+ m->next = NULL;
+ }
+#ifdef ZSH_MEM_DEBUG
+ m_m[size / M_ISIZE]++;
+#endif
+
+ unqueue_signals();
+ return (MALLOC_RET_T) sh;
+ }
+ /* we still want a small block but there were no block with a free
+ small block of the requested size; so we use the real allocation
+ routine to allocate a block for small blocks of this size */
+ os = size;
+ size = M_SBLEN(size);
+ } else
+ s = 0;
+
+/* search the free list for an block of at least the requested size */
+ for (mp = NULL, m = m_free; m && m->len < size; mp = m, m = m->next);
+
+ /* if there is an empty zsh heap at a lower address we steal it and take
+ the memory from it, putting the rest on the free list (remember
+ that the blocks on the free list are ordered) */
+
+ for (hp = NULL, h = heaps; h; hp = h, h = h->next)
+ if (!h->used &&
+ (!hf || h < hf) &&
+ (!m || ((char *)m) > ((char *)h)))
+ hf = h, hfp = hp;
+
+ if (hf) {
+ /* we found such a heap */
+ Heapstack hso, hsn;
+
+ /* delete structures on the list holding the heap states */
+ for (hso = hf->sp; hso; hso = hsn) {
+ hsn = hso->next;
+ zfree(hso, sizeof(*hso));
+ }
+ /* take it from the list of heaps */
+ if (hfp)
+ hfp->next = hf->next;
+ else
+ heaps = hf->next;
+ /* now we simply free it and than search the free list again */
+ zfree(hf, HEAPSIZE);
+
+ for (mp = NULL, m = m_free; m && m->len < size; mp = m, m = m->next);
+ }
+ if (!m) {
+ /* no matching free block was found, we have to request new
+ memory from the system */
+ n = (size + M_HSIZE + m_pgsz - 1) & ~(m_pgsz - 1);
+
+ if (((char *)(m = (struct m_hdr *)sbrk(n))) == ((char *)-1)) {
+ DPUTS(1, "MEM: allocation error at sbrk.");
+ unqueue_signals();
+ return NULL;
+ }
+ /* set m_low, for the check in free() */
+ if (!m_low)
+ m_low = (char *)m;
+
+#ifdef ZSH_MEM_DEBUG
+ m_s += n;
+
+ if (!m_l)
+ m_l = m;
+#endif
+
+ /* save new highest address */
+ m_high = ((char *)m) + n;
+
+ /* initialize header */
+ m->len = n - M_ISIZE;
+ m->next = NULL;
+
+ /* put it on the free list and set m_lfree pointing to it */
+ if ((mp = m_lfree))
+ m_lfree->next = m;
+ m_lfree = m;
+ }
+ if ((n = m->len - size) > M_MIN) {
+ /* the block we want to use has more than M_MIN bytes plus the
+ number of bytes that were requested; we split it in two and
+ leave the rest on the free list */
+ struct m_hdr *mtt = (struct m_hdr *)(((char *)m) + M_ISIZE + size);
+
+ mtt->len = n - M_ISIZE;
+ mtt->next = m->next;
+
+ m->len = size;
+
+ /* put the rest on the list */
+ if (m_lfree == m)
+ m_lfree = mtt;
+
+ if (mp)
+ mp->next = mtt;
+ else
+ m_free = mtt;
+ } else if (mp) {
+ /* the block we found wasn't the first one on the free list */
+ if (m == m_lfree)
+ m_lfree = mp;
+ mp->next = m->next;
+ } else {
+ /* it was the first one */
+ m_free = m->next;
+ if (m == m_lfree)
+ m_lfree = m_free;
+ }
+
+ if (s) {
+ /* we are allocating a block that should hold small blocks */
+ struct m_shdr *sh, *shn;
+
+ /* build the free list in this block and set `used' filed */
+ m->free = sh = (struct m_shdr *)(((char *)m) +
+ sizeof(struct m_hdr) + os);
+
+ for (n = M_SNUM - 2; n--; sh = shn)
+ shn = sh->next = sh + s;
+ sh->next = NULL;
+
+ m->used = 1;
+
+ /* put the block on the list of blocks holding small blocks if
+ this size */
+ m->next = m_small[s];
+ m_small[s] = m;
+
+#ifdef ZSH_MEM_DEBUG
+ m_m[os / M_ISIZE]++;
+#endif
+
+ unqueue_signals();
+ return (MALLOC_RET_T) (((char *)m) + sizeof(struct m_hdr));
+ }
+#ifdef ZSH_MEM_DEBUG
+ m_m[m->len < (1024 * M_ISIZE) ? (m->len / M_ISIZE) : 1024]++;
+#endif
+
+ unqueue_signals();
+ return (MALLOC_RET_T) & m->next;
+}
+
+/* this is an internal free(); the second argument may, but need not hold
+ the size of the block the first argument is pointing to; if it is the
+ right size of this block, freeing it will be faster, though; the value
+ 0 for this parameter means: `don't know' */
+
+/**/
+void
+zfree(void *p, int sz)
+{
+ struct m_hdr *m = (struct m_hdr *)(((char *)p) - M_ISIZE), *mp, *mt = NULL;
+ int i;
+# ifdef DEBUG
+ int osz = sz;
+# endif
+
+#ifdef ZSH_SECURE_FREE
+ sz = 0;
+#else
+ sz = (sz + M_ALIGN - 1) & ~(M_ALIGN - 1);
+#endif
+
+ if (!p)
+ return;
+
+ /* first a simple check if the given address is valid */
+ if (((char *)p) < m_low || ((char *)p) > m_high ||
+ ((long)p) & (M_ALIGN - 1)) {
+ DPUTS(1, "BUG: attempt to free storage at invalid address");
+ return;
+ }
+
+ queue_signals();
+
+ fr_rec:
+
+ if ((i = sz / M_ISIZE) < M_NSMALL || !sz)
+ /* if the given sizes says that it is a small block, find the
+ memory block holding it; we search all blocks with blocks
+ of at least the given size; if the size parameter is zero,
+ this means, that all blocks are searched */
+ for (; i < M_NSMALL; i++) {
+ for (mp = NULL, mt = m_small[i];
+ mt && (((char *)mt) > ((char *)p) ||
+ (((char *)mt) + mt->len) < ((char *)p));
+ mp = mt, mt = mt->next);
+
+ if (mt) {
+ /* we found the block holding the small block */
+ struct m_shdr *sh = (struct m_shdr *)p;
+
+#ifdef ZSH_SECURE_FREE
+ struct m_shdr *sh2;
+
+ /* check if the given address is equal to the address of
+ the first small block plus an integer multiple of the
+ block size */
+ if ((((char *)p) - (((char *)mt) + sizeof(struct m_hdr))) %
+ M_BSLEN(mt->len)) {
+
+ DPUTS(1, "BUG: attempt to free storage at invalid address");
+ unqueue_signals();
+ return;
+ }
+ /* check, if the address is on the (block-intern) free list */
+ for (sh2 = mt->free; sh2; sh2 = sh2->next)
+ if (((char *)p) == ((char *)sh2)) {
+
+ DPUTS(1, "BUG: attempt to free already free storage");
+ unqueue_signals();
+ return;
+ }
+#endif
+ DPUTS(M_BSLEN(mt->len) < osz,
+ "BUG: attempt to free more than allocated.");
+
+#ifdef ZSH_MEM_DEBUG
+ m_f[M_BSLEN(mt->len) / M_ISIZE]++;
+ memset(sh, 0xff, M_BSLEN(mt->len));
+#endif
+
+ /* put the block onto the free list */
+ sh->next = mt->free;
+ mt->free = sh;
+
+ if (--mt->used) {
+ /* if there are still used blocks in this block, we
+ put it at the beginning of the list with blocks
+ holding small blocks of the same size (since we
+ know that there is at least one free block in it,
+ this will make allocation of small blocks faster;
+ it also guarantees that long living memory blocks
+ are preferred over younger ones */
+ if (mp) {
+ mp->next = mt->next;
+ mt->next = m_small[i];
+ m_small[i] = mt;
+ }
+ unqueue_signals();
+ return;
+ }
+ /* if there are no more used small blocks in this
+ block, we free the whole block */
+ if (mp)
+ mp->next = mt->next;
+ else
+ m_small[i] = mt->next;
+
+ m = mt;
+ p = (void *) & m->next;
+
+ break;
+ } else if (sz) {
+ /* if we didn't find a block and a size was given, try it
+ again as if no size were given */
+ sz = 0;
+ goto fr_rec;
+ }
+ }
+#ifdef ZSH_MEM_DEBUG
+ if (!mt)
+ m_f[m->len < (1024 * M_ISIZE) ? (m->len / M_ISIZE) : 1024]++;
+#endif
+
+#ifdef ZSH_SECURE_FREE
+ /* search all memory blocks, if one of them is at the given address */
+ for (mt = (struct m_hdr *)m_low;
+ ((char *)mt) < m_high;
+ mt = (struct m_hdr *)(((char *)mt) + M_ISIZE + mt->len))
+ if (((char *)p) == ((char *)&mt->next))
+ break;
+
+ /* no block was found at the given address */
+ if (((char *)mt) >= m_high) {
+ DPUTS(1, "BUG: attempt to free storage at invalid address");
+ unqueue_signals();
+ return;
+ }
+#endif
+
+ /* see if the block is on the free list */
+ for (mp = NULL, mt = m_free; mt && mt < m; mp = mt, mt = mt->next);
+
+ if (m == mt) {
+ /* it is, ouch! */
+ DPUTS(1, "BUG: attempt to free already free storage");
+ unqueue_signals();
+ return;
+ }
+ DPUTS(m->len < osz, "BUG: attempt to free more than allocated");
+#ifdef ZSH_MEM_DEBUG
+ memset(p, 0xff, m->len);
+#endif
+ if (mt && ((char *)mt) == (((char *)m) + M_ISIZE + m->len)) {
+ /* the block after the one we are freeing is free, we put them
+ together */
+ m->len += mt->len + M_ISIZE;
+ m->next = mt->next;
+
+ if (mt == m_lfree)
+ m_lfree = m;
+ } else
+ m->next = mt;
+
+ if (mp && ((char *)m) == (((char *)mp) + M_ISIZE + mp->len)) {
+ /* the block before the one we are freeing is free, we put them
+ together */
+ mp->len += m->len + M_ISIZE;
+ mp->next = m->next;
+
+ if (m == m_lfree)
+ m_lfree = mp;
+ } else if (mp)
+ /* otherwise, we just put it on the free list */
+ mp->next = m;
+ else {
+ m_free = m;
+ if (!m_lfree)
+ m_lfree = m_free;
+ }
+
+ /* if the block we have just freed was at the end of the process heap
+ and now there is more than one page size of memory, we can give
+ it back to the system (and we do it ;-) */
+ if ((((char *)m_lfree) + M_ISIZE + m_lfree->len) == m_high &&
+ m_lfree->len >= m_pgsz + M_MIN) {
+ long n = (m_lfree->len - M_MIN) & ~(m_pgsz - 1);
+
+ m_lfree->len -= n;
+ if (brk(m_high -= n) == -1)
+ DPUTS(1, "MEM: allocation error at brk.");
+
+#ifdef ZSH_MEM_DEBUG
+ m_b += n;
+#endif
+ }
+ unqueue_signals();
+}
+
+FREE_RET_T
+free(FREE_ARG_T p)
+{
+ zfree(p, 0); /* 0 means: size is unknown */
+
+#ifdef FREE_DO_RET
+ return 0;
+#endif
+}
+
+/* this one is for strings (and only strings, real strings, real C strings,
+ those that have a zero byte at the end) */
+
+/**/
+void
+zsfree(char *p)
+{
+ if (p)
+ zfree(p, strlen(p) + 1);
+}
+
+MALLOC_RET_T
+realloc(MALLOC_RET_T p, MALLOC_ARG_T size)
+{
+ struct m_hdr *m = (struct m_hdr *)(((char *)p) - M_ISIZE), *mp, *mt;
+ char *r;
+ int i, l = 0;
+
+ /* some system..., see above */
+ if (!p && size)
+ return (MALLOC_RET_T) malloc(size);
+ /* and some systems even do this... */
+ if (!p || !size)
+ return (MALLOC_RET_T) p;
+
+ queue_signals(); /* just queue signals caught rather than handling them */
+
+ /* check if we are reallocating a small block, if we do, we have
+ to compute the size of the block from the sort of block it is in */
+ for (i = 0; i < M_NSMALL; i++) {
+ for (mp = NULL, mt = m_small[i];
+ mt && (((char *)mt) > ((char *)p) ||
+ (((char *)mt) + mt->len) < ((char *)p));
+ mp = mt, mt = mt->next);
+
+ if (mt) {
+ l = M_BSLEN(mt->len);
+ break;
+ }
+ }
+ if (!l)
+ /* otherwise the size of the block is in the memory just before
+ the given address */
+ l = m->len;
+
+ /* now allocate the new block, copy the old contents, and free the
+ old block */
+ r = malloc(size);
+ memcpy(r, (char *)p, (size > l) ? l : size);
+ free(p);
+
+ unqueue_signals();
+ return (MALLOC_RET_T) r;
+}
+
+MALLOC_RET_T
+calloc(MALLOC_ARG_T n, MALLOC_ARG_T size)
+{
+ long l;
+ char *r;
+
+ if (!(l = n * size))
+ return (MALLOC_RET_T) m_high;
+
+ r = malloc(l);
+
+ memset(r, 0, l);
+
+ return (MALLOC_RET_T) r;
+}
+
+#ifdef ZSH_MEM_DEBUG
+
+/**/
+int
+bin_mem(char *name, char **argv, char *ops, int func)
+{
+ int i, ii, fi, ui, j;
+ struct m_hdr *m, *mf, *ms;
+ char *b, *c, buf[40];
+ long u = 0, f = 0;
+
+ if (ops['v']) {
+ printf("The lower and the upper addresses of the heap. Diff gives\n");
+ printf("the difference between them, i.e. the size of the heap.\n\n");
+ }
+ printf("low mem %ld\t high mem %ld\t diff %ld\n",
+ (long)m_l, (long)m_high, (long)(m_high - ((char *)m_l)));
+
+ if (ops['v']) {
+ printf("\nThe number of bytes that were allocated using sbrk() and\n");
+ printf("the number of bytes that were given back to the system\n");
+ printf("via brk().\n");
+ }
+ printf("\nsbrk %d\tbrk %d\n", m_s, m_b);
+
+ if (ops['v']) {
+ printf("\nInformation about the sizes that were allocated or freed.\n");
+ printf("For each size that were used the number of mallocs and\n");
+ printf("frees is shown. Diff gives the difference between these\n");
+ printf("values, i.e. the number of blocks of that size that is\n");
+ printf("currently allocated. Total is the product of size and diff,\n");
+ printf("i.e. the number of bytes that are allocated for blocks of\n");
+ printf("this size.\n");
+ }
+ printf("\nsize\tmalloc\tfree\tdiff\ttotal\n");
+ for (i = 0; i < 1024; i++)
+ if (m_m[i] || m_f[i])
+ printf("%ld\t%d\t%d\t%d\t%ld\n", (long)i * M_ISIZE, m_m[i], m_f[i],
+ m_m[i] - m_f[i], (long)i * M_ISIZE * (m_m[i] - m_f[i]));
+
+ if (m_m[i] || m_f[i])
+ printf("big\t%d\t%d\t%d\n", m_m[i], m_f[i], m_m[i] - m_f[i]);
+
+ if (ops['v']) {
+ printf("\nThe list of memory blocks. For each block the following\n");
+ printf("information is shown:\n\n");
+ printf("num\tthe number of this block\n");
+ printf("tnum\tlike num but counted separatedly for used and free\n");
+ printf("\tblocks\n");
+ printf("addr\tthe address of this block\n");
+ printf("len\tthe length of the block\n");
+ printf("state\tthe state of this block, this can be:\n");
+ printf("\t used\tthis block is used for one big block\n");
+ printf("\t free\tthis block is free\n");
+ printf("\t small\tthis block is used for an array of small blocks\n");
+ printf("cum\tthe accumulated sizes of the blocks, counted\n");
+ printf("\tseparatedly for used and free blocks\n");
+ printf("\nFor blocks holding small blocks the number of free\n");
+ printf("blocks, the number of used blocks and the size of the\n");
+ printf("blocks is shown. For otherwise used blocks the first few\n");
+ printf("bytes are shown as an ASCII dump.\n");
+ }
+ printf("\nblock list:\nnum\ttnum\taddr\tlen\tstate\tcum\n");
+ for (m = m_l, mf = m_free, ii = fi = ui = 1; ((char *)m) < m_high;
+ m = (struct m_hdr *)(((char *)m) + M_ISIZE + m->len), ii++) {
+ for (j = 0, ms = NULL; j < M_NSMALL && !ms; j++)
+ for (ms = m_small[j]; ms; ms = ms->next)
+ if (ms == m)
+ break;
+
+ if (m == mf)
+ buf[0] = '\0';
+ else if (m == ms)
+ sprintf(buf, "%ld %ld %ld", M_SNUM - ms->used, ms->used,
+ (m->len - sizeof(struct m_hdr)) / M_SNUM + 1);
+
+ else {
+ for (i = 0, b = buf, c = (char *)&m->next; i < 20 && i < m->len;
+ i++, c++)
+ *b++ = (*c >= ' ' && *c < 127) ? *c : '.';
+ *b = '\0';
+ }
+
+ printf("%d\t%d\t%ld\t%ld\t%s\t%ld\t%s\n", ii,
+ (m == mf) ? fi++ : ui++,
+ (long)m, m->len,
+ (m == mf) ? "free" : ((m == ms) ? "small" : "used"),
+ (m == mf) ? (f += m->len) : (u += m->len),
+ buf);
+
+ if (m == mf)
+ mf = mf->next;
+ }
+
+ if (ops['v']) {
+ printf("\nHere is some information about the small blocks used.\n");
+ printf("For each size the arrays with the number of free and the\n");
+ printf("number of used blocks are shown.\n");
+ }
+ printf("\nsmall blocks:\nsize\tblocks (free/used)\n");
+
+ for (i = 0; i < M_NSMALL; i++)
+ if (m_small[i]) {
+ printf("%ld\t", (long)i * M_ISIZE);
+
+ for (ii = 0, m = m_small[i]; m; m = m->next) {
+ printf("(%ld/%ld) ", M_SNUM - m->used, m->used);
+ if (!((++ii) & 7))
+ printf("\n\t");
+ }
+ putchar('\n');
+ }
+ if (ops['v']) {
+ printf("\n\nBelow is some information about the allocation\n");
+ printf("behaviour of the zsh heaps. First the number of times\n");
+ printf("pushheap(), popheap(), and freeheap() were called.\n");
+ }
+ printf("\nzsh heaps:\n\n");
+
+ printf("push %d\tpop %d\tfree %d\n\n", h_push, h_pop, h_free);
+
+ if (ops['v']) {
+ printf("\nThe next list shows for several sizes the number of times\n");
+ printf("memory of this size were taken from heaps.\n\n");
+ }
+ printf("size\tmalloc\ttotal\n");
+ for (i = 0; i < 1024; i++)
+ if (h_m[i])
+ printf("%ld\t%d\t%ld\n", (long)i * H_ISIZE, h_m[i],
+ (long)i * H_ISIZE * h_m[i]);
+ if (h_m[1024])
+ printf("big\t%d\n", h_m[1024]);
+
+ return 0;
+}
+
+#endif
+
+#else /* not ZSH_MEM */
+
+/**/
+void
+zfree(void *p, int sz)
+{
+ if (p)
+ free(p);
+}
+
+/**/
+void
+zsfree(char *p)
+{
+ if (p)
+ free(p);
+}
+
+#endif